
Statistics of cycles: how loopy is your network?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 4589

(http://iopscience.iop.org/0305-4470/38/21/005)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 4589–4595 doi:10.1088/0305-4470/38/21/005

Statistics of cycles: how loopy is your network?

Hernán D Rozenfeld1, Joseph E Kirk2, Erik M Bollt1,2

and Daniel ben-Avraham1

1 Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA
2 Department of Math and Computer Science, Clarkson University, Potsdam,
NY 13699-5805, USA

Received 3 January 2005, in final form 11 April 2005
Published 10 May 2005
Online at stacks.iop.org/JPhysA/38/4589

Abstract
We study the distribution of cycles of length h in large networks (of size
N � 1) and find it to be an excellent ergodic estimator, even in the extreme
inhomogeneous case of scale-free networks. The distribution is sharply peaked
around a characteristic cycle length, h∗ ∼ Nα . Our results suggest that h∗
and the exponent α might usefully characterize broad families of networks.
In addition to an exact counting of cycles in hierarchical nets, we present a
Monte Carlo sampling algorithm for approximately locating h∗ and reliably
determining α. Our empirical results indicate that for small random scale-free
nets of degree exponent λ, α = 1/(λ − 1), and α grows as the nets become
larger.

PACS numbers: 89.75.Hc, 02.50.Cw, 05.40.−a, 0.50.+q

(Some figures in this article are in colour only in the electronic version)

Recently, there has been much interest in large networks arising in a natural or social context
(the Internet and the World Wide Web, networks of social contacts, networks of predator–prey,
of flight connections, the power grid, etc) [1–3]. Initially, such networks were believed to
be modelled by Erdó́s–Rényi (ER) random graphs [4]—graphs obtained by realizing only a
fraction p of the 1

2N(N − 1) links that could potentially form between the N nodes present.
Subsequently, Watts and Strogatz demonstrated that the neighbours of a node, in most of the
networks in question, tend to be connected to one another as well. This effect of clustering,
absent in ER graphs, is neatly captured in their small world network model [5, 6]. Then,
Bárabasi et al [1, 7] observed that the degree k of nodes (number of links connected to a
node) in realistic networks follows a power law, or scale-free distribution: P(k) ∼ k−λ. The
scale-free property gives rise to exotic behaviour of the networks, such as resilience to random
dilution (the percolation transition does not take place for λ < 3), on the one hand, and high
vulnerability to removal of the most connected nodes, on the other hand, and has become a
principal focus of attention [8].

The importance ascribed to scale-free degree distributions often obscures the relevance of
other attributes. The question is whether there exist other global characteristics of nets, besides
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Figure 1. Recursive scale-free graph, with λ = 1 + ln 3/ln 2. Generation n + 1 is obtained by
joining three replicas at the hubs (most connected nodes) A, B and C. The closely related Sierpinski
Gasket calls for joining the replicas at the vertices, 1, 2 and 3.

their degree distribution, that are relevant to their performance (stability, ease of transport,
searchability). Here we propose that the statistics of cycles seems particularly promising in
this respect. Cycles are relevant to propagation along the net, and their statistics exhibits a
high degree of ergodicity (the results do not vary much from one node to the next). We find
that in the thermodynamic limit of very large nets (N � 1) the distribution of cycles of length
h is sharply peaked around a characteristic cycle length h∗ ∼ Nα . Thus the distribution can be
characterized by a single figure of merit—the exponent α, which we refer to as the loopiness
exponent. Generically α � 1, but we shall see that for many well-known examples α = 1,
while for small random scale-free nets of degree exponent λ our preliminary results suggest
that α = 1/(λ − 1), and α grows as the nets become larger.

The question of ergodicity is particularly difficult in scale-free graphs. The highly
connected nodes are responsible for many of the special properties attributed to these nets (lack
of a percolation transition, rapid transport), yet the lower-degree nodes account for most of the
nets’ mass. This skewness makes it a challenge to identify properties representative of the net
as a whole. Consider, for example, the clustering index, defined as Ci = Ei

/
1
2ki(ki − 1) [5]

(ki is the node’s degree, or number of neighbours, and Ei is the number of edges connecting
between those neighbours). The overall clustering index, C = 〈Ci〉, averaged over all the
nodes of the net, is a commonly cited statistic: in some scale-free networks C can be orders
of magnitude larger than the corresponding ER graphs (ER graphs with the same numbers of
nodes and links) [1]. However, the clustering index of highly connected nodes tends to be
quite smaller than that for nodes of small degree, and this variation is overlooked in the global
average.

The ergodicity problem is solved in the statistics of cycles in the following sense. An
h-cycle is a closed path through h connected links that is self-avoiding (does not revisit nodes,
other than the first) [9]. Define the global statistics Nh as the total number of distinct h-cycles
in the graph (cyclic permutations of the nodes do not count). The local counterpart, N

(i)
h ,

is the number of h-cycles that pass through node i. We argue that in scale-free graphs, it is
likely that any cycle of moderate length h will pass through the most connected node, so the
difference between Nh and N

(i)
h could be quite small, making the Nh a good global statistics.

Consider the deterministic scale-free graph of figure 1 [10]. Each successive generation is
obtained from the previous one by connecting a new node to both endpoints of every existing
link. Alternatively, the (n + 1)th generation could be constructed by adjoining three copies of
generation n at the hubs—the most connected nodes (denoted by A, B, C in figure 1). It can be
shown that the degree of the nodes is distributed in scale-free fashion, with λ = 1 + ln 3/ln 2
[10]. The recursive nature of this graph allows us to obtain the exact statistics of cycles. Let
Nh(n) and Lh(n) be the number of h-cycles, and the number of self-avoiding paths of length
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Figure 2. Statistics of cycles for the network of figure 1. Shown are ln Nh for generations
n = 3, 4, 5, 6, 7. Inset: the probability distribution for cycles of length x = h/h∗ tends to a delta
function as n → ∞ (N → ∞).
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Figure 3. The number of h-cycles that hit a hub, N
(A)
h , compared to the global statistics of

Nh. Shown are results for generation n = 7, superposed upon a plot of P(h). Note the perfect
agreement of the two statistics, where P(h) is significant.

h connecting between two hubs (A and B), in graphs of generation n, respectively. Then,

Nh(n + 1) = 3Nh(n) +
∑

h1,h2,h3
h1+h2+h3=h

Lh1(n)Lh2(n)Lh3(n), (1)

Lh(n + 1) = Lh(n) +
∑
h1,h2

h1+h2=h

Lh1(n)Lh2(n). (2)

Nh given by these relations is plotted in figure 2. Similar relations hold for the number of
h-cycles that pass through a hub. The two statistics become virtually identical beyond a small
threshold h, confirming that Nh does indeed constitute a good global estimator (figure 3).

Evident in figure 2 is the scaling property3

ln Nh = h∗f
(

h

h∗

)
, h∗ ∼ 2n, (3)

where the scaling function f (x) peaks at x = 1 (or h = h∗) and is characteristic of the graph in
question. The width of the distribution of cycles, expressed in terms of the scaling parameter

3 This scaling behaviour can also be confirmed directly from equations (1) and (2).
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x = h/h∗, is 1/
√

h∗, thus, in the thermodynamic limit of h∗ → ∞ (or N → ∞) it converges
to a delta function (figure 2, inset). It follows that in the thermodynamic limit the statistics
of cycles is characterized by a single parameter, h∗, or better, yet by the way this quantity
depends on the size of the net. For the network of figure 1, we have

h∗ ∼ Nα, α = ln 2

ln 3
= 1

λ − 1
(4)

(since the number of nodes in the net is N(n) = (3n + 3)/2, and h∗(n) ∼ 2n). We have tested
other recursive nets and found various model-dependent exponents α � 1. An interesting
question which we examine below is what is α for random scale-free nets.

We now examine the statistics of cycles in other well-known networks. In a regular square
lattice of

√
N × √

N sites, Jensen and Guttmann find a similar scaling to that suggested by
the example above, with h∗ ≈ 0.8N , or α = 1 [11]. It is also interesting to compare to the
statistics of cycles in the Sierpinski gasket, a fractal lattice which is closely related to the
scale-free net of figure 1. For a given generation, the two graphs have the same number of
nodes and links, but the Sierpinski gasket constitutes almost a regular graph, where all nodes
other than the three vertices share the same constant degree, k = 4. Here too, exploiting the
recursive nature of the lattice, and following an exact counting procedure [12], we find the
same kind of scaling as in equation (3), but with h∗ ∼ N , or α = 1.

Next, consider a complete graph of order N,KN . Starting from an arbitrary node, the
next node in the cycle can be chosen from any of the remaining N − 1 nodes, etc, yielding

Nh = N !

2h(N − h)!
, for complete graph. (5)

The additional factor of 1/(2h) corrects for overcounting: it does not matter where a cycle
starts (h possibilities), and whether one traces it clockwise or counterclockwise. At any rate,
it follows that h∗ ≈ N − 1 (N � 1), and once again α = 1. For the case of ER graphs, with
only a fraction p of the links realized, we cannot offer an exact expression but instead make
the following approximation: each link in an h-cycle is present with probability p, and so the
whole cycle exists with probability ph. We then ignore the correlation between cycles (due to
the fact that different cycles might share a subset of links) and write

Nh ≈ N !

2h(N − h)!
ph, for ER graphs. (6)

This expression is of course exact in the limit of p → 1, and it correctly predicts the breakdown
of cycles at the percolation transition threshold of pc = 1/(N − 1). When p is fixed and
N → ∞, we find once again h∗ ≈ N , suggesting α = 1. If the N → ∞ limit is approached
along with p = ω/N → 0, so as to keep next to the percolation transition, equation (6)
predicts h∗ ≈ (1 − ω−1)N , and still α = 1. However, the shortcomings of the approximation
involved make this last result rather questionable.

It would seem that in most cases the self-avoiding cycles are space filling (α = 1), yet
it is not clear whether this is true for ER graphs near the percolation transition. At any rate,
several recursive scale-free nets exhibit α < 1. In order to study this and similar issues, we
resort to a simple Monte Carlo procedure for sampling the enormous number of cycles (of all
sizes) that arise in various nets.

We first prune the net from all ‘dangling ends’: nodes of degree k = 1, and the link
leading to the node, are removed from the net. This action is reiterated until all extant nodes
are of degree k � 2. To find the frequency of cycles, we perform a self-avoiding random
walk, starting from a randomly selected node. Each step is chosen randomly between all
the possibilities that would not result in self-intersection (other than with the starting node).
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Figure 4. Sampled frequency of cycles, P(h)′, compared to their true frequency (◦), P(h), in a
small ER net of 18 nodes. Inset: the ratio P(h)′/P (h) increases exponentially with h.

The walk is terminated when it comes back to the starting node, and the number of steps, h,
is recorded. A cycle produced in this way is a biased representative of the subset of h-cycles,
because the excluded-volume constraint (the restriction of no self-intersection) is not uniform
along the walk, becoming more severe as the walk progresses. However, we know that this
effect can be neglected in regular lattices of dimension d � 4 [13]. We argue that the effect is
likewise minimal in the environment of large, multiply connected networks.

The frequency of h-cycles found out in this way is underestimated. Consider an arbitrary
h-cycle already lain on the net. Suppose that we are on node i on the cycle and we take a step,
choosing randomly from the ki − 1 links that would not force us back through the link leading
to i. The probability of hitting the next node on the cycle is 1/(ki − 1). The probability of
finding that particular cycle is then proportional to

∏
i1/(ki − 1), where the product is taken

over the nodes of the cycle. Thus, to better represent the true frequency of cycles, a cycle
found by the self-avoiding random walk procedure is counted

∏
i (ki − 1) times. This factor

is actually too large, because some of the ki − 1 links, when followed from node i, lead only
to dead ends (paths that self-intersect before completing the cycle). The net effect is that
the frequency of cycles of length h is overestimated by an exponential factor ∼ech. This is
illustrated in figure 4, where we compare the sampled frequency of cycles, P(h)′, to their true
frequency, P(h), in a small ER graph of 18 nodes. (The true frequency of cycles in such small
nets can be counted by properly adapted depth-first-search algorithms.)

As a result of the exponential overestimate, the most likely cycle is sampled at an apparent
location: h′

∗ = h∗ + cσ 2/2, where σ is the width of the distribution P(h). In all cases examined
above, σ 2 ∼ Nα , so that h′

∗ ∼ Nα and the sampling procedure yields the correct exponent α.
(However, if σ 2 ∼ Nβ, β > α, our sampling procedure would find the exponent β rather
than α.) Indeed, when applied to the recursive nets of figure 1, the sampling algorithm
finds h′

∗ ≈ 1.08h∗, and correctly predicts α = 0.63 ± 0.02 (compare with the exact result,
α = ln 2/ln 3 ≈ 0.6309).

We have applied the Monte Carlo sampling to random scale-free graphs of degree exponent
λ = 3. Our results, presented in figure 5, are consistent with the relation α = 1/(λ − 1) when
the nets are small (N � 200), but α grows as N increases. This can be understood in the
following way. For N ≈ 100 and λ = 3 we find that most cycles are formed between
the hub and nodes in the first shell (nodes connected to the hub by one link), see figure 6.
The few nodes in the second shell (two links away from the hub) that form part of cycles almost
never connect to one another. The likely cycle length is then proportional to the number of
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Figure 5. Statistics of cycles in random scale-free graphs with λ = 3. Results from Monte Carlo
counting are shown for nets of size N = 100, 200, 400, 800. Inset: scaling of h∗ with N (◦) is
consistent with h∗ ∼ Nα, α = 1/(λ − 1) = 0.5 (solid line) only for small N.

Figure 6. Typical random scale-free net of λ = 3 and N = 100. The net separates into small,
loopless components (shown on the right) and a giant component with loops involving mostly the
first shell of nodes attached to the hub.

nodes in the first shell, or to the degree of the hub, K ∼ N1/(λ−1) [8, 14]. Thus, for small N
the loop exponent is α = 1/(λ − 1). As N grows larger, nodes in higher shells form part of
interconnected cycles and α increases.

Cycles have been studied before, and several interesting results were obtained for cycles
of small length, h � N [9, 15, 16]. Our study indicates that the full distribution of cycles, of
all possible lengths, displays additional useful properties: ergodicity is implied in the fact that
the distribution of cycles that pass through a node is similar for most nodes of the net, even
in the extreme inhomogeneous case of scale-free networks. For large nets, the distribution
resembles a delta function that peaks about a typical cycle size, h∗ ∼ Nα . The exponent α

serves as a single figure of merit that characterizes the ‘loopiness’ of the net in question; the
larger α the more loopy the net. α = 1 for regular lattices and fractals, and for complete
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graphs. For small, random scale-free nets α = 1/(λ − 1), but α increases as the nets become
larger. It remains an open question whether the loopy exponent saturates at α = 1 as N → ∞.

Among the many remaining open questions, finding reliable and efficient algorithms for
sampling the distribution of cycles is perhaps the most important one. Only when these
become available will we be able to study the full statistics of cycles in the truly large nets that
have been the focus of so much recent attention.

Acknowledgments
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